Household remittance inflows and child education in Ghana: Exploring the gender and locational dimensions

Abdallah Abdul-Mumuni abdul.mumuni@upsamail.edu.gh

Isaac Koomson ikoomso2@une.edu.au / koomsonisaac@gmail.com

Forthcoming in the Journal of Economic Research (2019)

© 2019 Network for Socioeconomic Research and Advancement <u>www.nesranetwork.com</u>

Electronic copy available at: https://ssrn.com/abstract=3448287

Household remittance inflows and child education in Ghana: Exploring the gender and locational dimensions

Abdallah Abdul-Mumuni^{a c} Email: <u>abdul.mumuni@upsamail.edu.gh</u>

Isaac Koomson^{bc} E-mail: <u>ikoomson@myune.edu.au</u>

^a Department of Banking and Finance, University of Professional Studies, Accra, Ghana
 ^b UNE Business School, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, Australia
 ^c Network for Socioeconomic Research and Advancement (NESRA), Accra, Ghana

Abstract

This paper investigates the effect of household remittance inflows on child education in Ghana using data from the Ghana Living Standards Survey Six (GLSS 6). Employing an instrumental variable approach and including children at the nursery and kindergarten levels in our study, the following findings are established. First, remittance inflows generally reduce household liquidity constraints, translating into increased number of school hours for their children. Second, while remittance improves child education in the urban areas, it reduces school hours for their counterparts in rural communities. Third, gains in school hours from remittance inflows are much greater for boys but do not make any or much of a difference in improving that of the girl-child. We call for financial system regulations that help to substantially reduce transaction costs on (or rigidities in) remittance inflows so that its influence on child education outcomes will be improved.

Keywords: Remittances; child education; gender; rural; instrumental variable; household

1. Introduction

Remittances have become an important source of income in many households in developing countries. The total flow of international remittances to developing countries was \$429 billion in 2016. During the same period, international remittances to Ghana alone stood at US \$2100 million (World Bank, 2017). Over the last decade, flow of internal remittances in Ghana has also been substantial due to northern-south, rural-rural and rural-urban migration (Mensah-Bonsu, 2003;Twum-Baah, Nabila, & Aryee, 1995), where migrants remit their families they leave behind (Mazzucato, Van Den Boom, & Nsowah-Nuamah, 2008). Not only does remittance provide direct financial support to households but it eases budget constraints of households by increasing the disposable income available for consumption and investment (Edwards & Ureta, 2003; McKenzie & Rapoport, 2011). This explains how remittance inflows increase households' ability to pay for children's education and enhance human capital development (Adams & Cuecuecha, 2010; Göbel, 2013; Lu & Treiman, 2007). This is also because poverty has been cited as being a barrier to children's education in sub-Saharan Africa (Roby, Erickson, & Nagaishi, 2016).

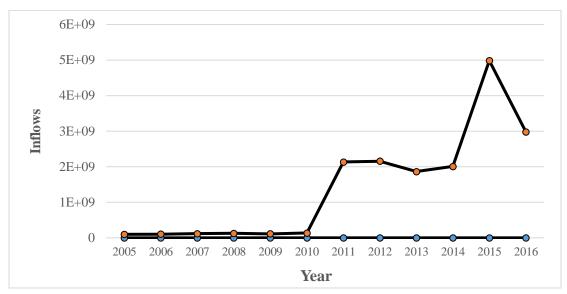
Studies from Asia, Latin America and Europe have mainly supported the positive relationship between remittance inflow and child education. In Mexico, Córdova (2006) found that an increase in the fraction of households receiving remittances leads to a decrease in illiteracy and an increase in school attendance for children between 6 and 14 years old. Based on an income effect, Edwards and Ureta (2003) also found that remittance inflows lead to an increase in the number of hours Salvadorian children spend in school. While Yang (2008) found, after studying the 1997 Asian financial crisis, that an increase in the receipt of international remittances increased child schooling in the Philippines, Amuedo-Dorantes (2010) established that remittance income helps to neutralize the disruptive effect of household out-migration on children's educational attainment in the Dominican Republic. Acosta, Fajnzylber, and Lopez (2010) also employed a two-step Heckman technique on data from 11 Latin American countries and found that remittances appeared to increase the educational attainment of children in some specific groups (considering the country, gender and urban dimensions).

Additionally, studies by Gorlich et al.(2007) Matano and Ramos(2013) in Moldova; Nguyen and Nguyen (2015); Binci and Giannelli (2012) in Vietnam; and Mara, Narazani, Saban and Stojilovska (2012) in Albania have all shown that a rise in migration and household remittance inflows can result in a boom in university education and educational status of children in general. In Jordan, Mansour and Chaaban (2011) have shown that remittance inflows have a positive effect on both educational attainment and attendance. Adams (2010) also conducted their study in Guatemala and found that remittance-receiving households spend more at the margin on education, than on consumption. Furthermore, he finds differential impacts by level of education. Remittance receiving households tend to allocate slightly more to preparatory and primary schooling, but at the secondary school level they allocate significantly more funds to education than non- remittance receiving households. Just like other parts of the world, most research findings from Africa corroborate the positive effect of remittance inflows on child education. In Egypt, Elbadawy and Roushdy (2009) studied children from remittance-receiving households, while accounting for gender differences and different cohorts, and found that remittances have a positive effect on the school attendance of boys but less of an effect for girls. The effect was particularly strong among boys nearing university enrolment age while for girls, this was true only for those aged 15 to 17 years. Hines (2014) has also shown that the amount of remittances a household receives has a positive effect on the level of education expenditures in Kenyan households. In South Africa, Lu and Treiman (2007) found that flow of remittances into households substantially increase the likelihood that children will be in school, through increased household educational spending, reduced child labour, and mitigation of the negative effect of parental absence due to outmigration. This is similar the finding from Mali, where Gubert (2007) has shown that remittance inflow alleviate poverty and encourage human capital formation.

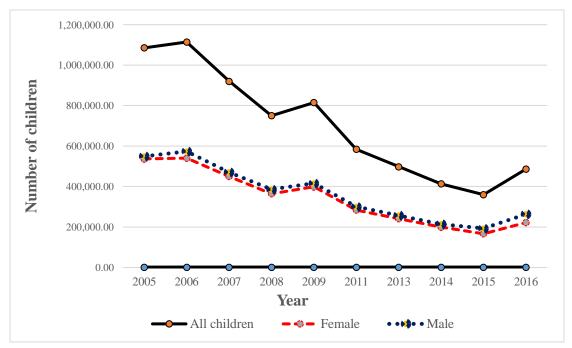
Despite the myriad of evidence in support of the positive effect of remittance on child education, some researchers in different studies have shown how remittance inflows can also have a negative influence on children's educational attainment and outcomes in China, Bangladesh and Tajikistan ((Zhu, 2016; Mim & Mabrouk, 2011; Kollner, 2013). In the Chinese case, it mainly affected children in the older age group. Some have even argued that the absence of a migrant from the household may neutralise the positive effects of remittances on child education ('Xu, Xie, 2015; McKenzie & Rapoport, 2011; Acosta, 2006). For instance, some children may need to take over family chores, or work in the family business due to the absence of a family member. These responsibilities may interfere with schooling even if the household has money to send the children to school (Amuedo-Dorantes, Georges, & Pozo, 2010).

In Ghana, many studies have been done on remittance and its influence on socioeconomic indicators (Mazzucato, 2011;Kabki, Mazzucato, & Appiah, 2004; Mazzucato, 2009; Wong, 2006) but those focusing on the relationship between household remittance inflow and child education are quite limited. A study by Gyimah-Brempong and Asiedu (2015) has indicated that remittances significantly increase the probability that families enroll their children in primary and secondary schools, suggesting that remittances increase education and human capital formation. On the other hand, Adams Jr and Cuecuecha (2013) found remittances-receiving households in Ghana to be marginally spending lesser than their counterparts in non-remittance, education of parents also influence their children's education and even informs the type of educational outlet they seek for their children (Johnson, Padilla, & Votruba-Drzal, 2017; Greenberg, 2011).

Deductions from the evidence above is that the extant literature on the remittance inflowchild education nexus have largely been undertaken in Asia and Latin American countries (Hanson & Woodruff, 2003; Edwards & Ureta, 2003; Arif, 2004; Acosta, 2006; Amuedo-Dorantes & Pozo, 2010; (Sherpa, 2011); Chaaban & Mansour, 2012; Mara et al., 2012; Arif & Chaudhry, 2015). The studies from Ghana and other African countries have been limited (Adams & Cuecuecha, 2013; Gyimah-Brempong & Asiedu, 2015; Pickbo;urn, 2016;Hines, 2014; Elbadawy & Roushdy, 2009) Bouoiyour & Miftah, 2016) and have largely ignored children at the nursery and kindergarten levels. Apart from calling for an inclusion of children in nursery and kindergarten in child education studies, because these levels form part of the educational structure, these children are also potential beneficiaries of household remittance inflows. From birth to age six, the growth of mental and physical abilities of the child progress at an astounding rate and this lays the foundation for later school success.


In addition to the above-mentioned gap in empirical studies, these studies have largely ignored the fact that remittance may be endogenous (Acosta, 2007) and have less explored the gender and locational heterogeneities that may in exist in the effect of remittance inflows on child education. Although Acosta et al. (2007) acknowledged that remittance may be endogenous and accounted for the gender and urban dimensions, they did not employ an instrumental variable (IV) approach but used a two-step Heckman strategy to assert causality. The Egyptian study by (Elbadawy & Roushdy, 2009) that also accounted for the gender differences and different cohorts did not account for the locational dimension and did not use an IV approach. It must also be noted that the above-mentioned studies did include pre-primary school education in the remittance-child education relationship.

In the light of the above, we employ an IV strategy to explore the effect of household remittance inflows on child education by focusing on the school hours spent per week by children and further examine the gender (boys and girls) and locational dimensions. This study contributes to the extant literature in general and specific terms. Generally, it employs an instrumental variable strategy to resolve the endogeneity problem associated with remittance and explores both the gender and locational dimensions of the remittance-child education relationship. Specifically, we contribute to the relatively sparse literature from Africa that focuses on household remittance inflows and child education.


The rest of paper is organized as follows. Section 2 discusses individual and family theories of remittances while section 3 describes our data and methodology. We tackle empirical analysis and discussion of results in section 4. Section 5 deals with conclusion and recommendation.

2. Trends in household remittance inflows and children out of school in Ghana

Remittance inflows into households (Figure 1) show a steady upsurge from 2005 to 2010 and saw an upward trend from 2010 to 2015 but current figures indicate a downward movement. Although some of the effects of such trends on household indicators have been documented, Figure 2 also shows that the total number of children not enrolled in primary and secondary schools have declined from 2005 to 2015 but only experienced an increase in 2016. Specifically, the increase in the number of males not enrolled are more than females. The dynamics of the trend in household remittance inflows and the child education is the motivation behind this study.

Figure 1: Household remittance inflows in Ghana (cash or in kind) (current US\$) Source: World Bank — World Development Indicators (2016)

Figure 2: Number of children not enrolled in primary or secondary school Source: World Bank — World Development Indicators (2016)

3. Individual and family theories of remittance

According to Bouoiyour and Miftah (2015) microeconomic studies have shown that socio-economic characteristics of migrants and recipient households affect the propensity to remit and receive remittances.

The economic literature on the motives of remittances has specifically discussed two types of theoretical models, namely, the individual and "family" models. At the individual level, altruism and self-interest are considered as drivers of remittances. According to the altruistic model, migrants remit because they are concerned about the consumption of their households back home. According to Lucas and Stark (1985) and Rapoport and Docquier (2005), the intention of migrant workers is to improve the welfare of their household members and friends back home by incorporating the utility of these people in their own utility. On the other hand, in the pure self-interest model, it is assumed that an individual strategy of transfer is chosen by the migrants. This model explains three reasons why migrants send remittances, namely: the intention to return to the hometown or country of origin, investment in the hometown or country of origin and the desire to inherit the assets of the family of origin (Lucas & Stark, 1985)

There is also the implicit intra-familial contract between the migrant on the one hand and the family on the other hand. In other words, there is a contractual agreement between the migrant and the family. This involves two models: the implicit contract of co-insurance and the implicit contract of loan repayment. The model of co-insurance contract implies that the family initially invests in the education and livelihood of the migrant and may finance the costs of his/her migration. When the migrant gets settled in the host town or country and starts working, he/she must support the family back home by transferring a portion of his/her savings. This new income will allow the household members back home to cope with possible shocks or hardships, such as sickness, unemployment, poor harvest and also pay for their children's education and undertake new projects. According to Azam and Gubert (2005) the household considers this co-insurance contract as a means to reduce its economic risks and to potentially increase its income. In some settings, the decision to remit money back home by the migrant in order to cover risks is explained by the personal risks incurred by the migrants in the host community (Amuedo-Dorantes & Pozo, 2006).

On the other hand, the implicit family loan repayment contract ties migrants to their family. As part of this family contract, remittances are seen as a return on investment; they are simply the repayment of costs incurred by the migratory family (the cost of education and/or the cost of migration). The financing of these costs is subject to an implicit agreement. Under this agreement, parents finance their children's education, travel and settlement in a town or country. Here, remittances are not expected to decrease over time as in the altruistic model because a share of these funds may be used to finance migration costs for future generations.

Other motivations of remittances have been identified in the literature as the exchange of services. For example, the migrant parents send remittances to household members back home for caring for their children during their migration. Closely related to the exchange motive is the investment motive. In the investment motive, the migrants send remittances to their family back

home which helps to take care of their investment during the period of migration (De La Brière, de Janvry, Lambert, & Sadoulet, 1997; Poirine, 1997)

Even though the afore-mentioned motives are considered to be separate and different from each other, they sometimes overlap. Thus, they are essentially all the same motive with the view to increasing the welfare of the sender and household members back home.

4. Data and Methodology

4.1 Data

This study uses cross-sectional data obtained from the Ghana Living Standards Survey Round Six (GLSS 6). The GLSS 6 is a nationwide household survey that was carried out between 2012 and 2013 and designed to generate information on living conditions in Ghana. A total of 16,772 out of a sample of 18,000 households were successfully enumerated (Ghana Statistical Service [GSS], 2014) resulting in a 93.2% response rate. The GLSS 6 contains information on migration, remittance, employment and time use, housing conditions, health, education, household agriculture, expenditure and income and also covers household financial issues. According to the GLSS round 6 report, the annual estimated total value of remittances received by households amounted to $GH\phi$ 1,804 million. The report defines a child as a person aged less than 15 years at the time of the interview. In this study we focus on children aged 2 to 14 years. According to the GLSS 6 data, out of 16,722 households, 15,733 households have school children residing in them. The reduction in the sample size to 2,520 is due to missing observations.

4.1.1 Summary Statistics

From the summary statistics in Table 1, it can be seen that average remittance inflows into households is $GH \notin 532.88$ (US\$266.72)¹. The receipt of remittances can relax the liquidity constraint faced by households and make them spend more time in school. The average household income without remittance is $GH \notin 8779.46$ (US\$4394.34) while about seven people live in a household which can negatively affect child schooling because everyone in the household competes for the limited resource. The average age of children in the sample is 8.7 years while about 19.9% of household heads is without their spouse in the same home. In that case, the attention given to the child reduces and this, in turn, affects the total number of hours the child spends in school per week. Furthermore, it is indicated that about 42% of household heads are educated. It is expected that educated household heads will place a higher premium on their children's education. Finally, children spend an average of about 27 hours per week in school and this is because some of the children spend long hours in traffic before getting to school (an urban phenomenon) and others do house chores before going to school.

¹ Exchange rate is US1= GH¢1.9979 — the exchange at the time of was data collection

Variable	Full Model		Urban		Rural	
	Mean	Standard	Mean	Standard	Mean	Standard
		Deviation		Deviation		Deviation
Total remittance inflows	532.88	1669.84	904.71	2580.01	311.61	598.43
Rural (0=urban; 1=rural)	0.627	0.484				
Household income (without remittance)	8779.46	13429.38	8531.87	12363.	8926.79	14026.82
Number of migrants	0.118	0.507	0.089	0.441	0.13	0.54
Absence of spouse	0.199	0.399	0.306	0.461	0.136	0.541
Household size	7.133	3.284	6.511	2.80	7.50	3.488
Age of household head	48.60	14.488	47.472	14.21	8.724	3.165
Female household head(1=female; 0=male)	0.196	0.397	0.289	0.453	0.14	0.347
Education of head (1=yes; 0=no)	0.451	0.498	0.594	0.491	0.364	0.481
Hours of child labour per week	11.495	24.35	7.669	19.140	13.773	26.723
Age of child	8.744	3.20	8.776	3.267	8.724	3.165
Female child (0=male; 1=female)	0.497	0.50	0.528	0.499	0.478	0.50
School hours spent per week	26.89	2.43	29.19	9.25	25.52	9.28

 Table 1: Summary statistics of variables used in estimating the effect of remittance inflow

 on child education

Source: Computed from GLSS 6, 2012/2013

4.2 Methodology

4.2.1 Theoretical framework

The theoretical framework for this study draws from the insights of Milligan (2009). Suppose that a household maximizes utility, U which is a function of a vector of quantities consumed $\{c_1, c_2, \dots, c_j, c_j\} = \vec{c}$ and a vector of child education variables $\{e_1, e_2, \dots, e_k, \dots, e_k\} = \vec{e}$,

such that $\forall_j, \frac{\partial u \begin{pmatrix} \vec{c}, \vec{e} \\ \partial c_j \end{pmatrix}}{\partial c_j} > 0$ and $\forall_k, \frac{\partial u \begin{pmatrix} \vec{c}, \vec{e} \\ \partial e_k \end{pmatrix}}{\partial e_k} > 0$. Households maximize utility in two ways:

by consuming and by spending income on child education.

Consumption and child education are assumed to be positive functions of household income (which includes remittances). Suppose that the k^{th} measure of child education e_k is a linear combination of remittances and other household and individual level variables, such that

$$e_{k} = \alpha_{0,k} + \alpha_{1,k} \sum_{m=1}^{M} MPC_{m,k} Y_{m} + \beta_{k} X_{k}$$
(1)

where $MPC_{m,k}$ are rates of improvement to child education metric e_k from household income, Y_m . Vectors of coefficients and other independent variables are represented by β_k and X_k respectively. Since the focus of this study is on the effect of remittances on child education, equation (1) is re-written as follows:

$$e_k = \alpha_{0,k} + \alpha_{1,k} \operatorname{Re} m + \beta_k X_k + \varepsilon_k \tag{2}$$

where Rem is remittances income and ε_k is the error term.

Amuendo-Dorantes and Pozo (2010) formulated a variant of equation (2) and stated their child education function as;

$$hours_\operatorname{sch}_{ij} = \alpha_0 + \alpha_1 \operatorname{Re} m_j + \alpha_2 X_j + \varepsilon_j$$
(3)

where *hours*_sch represents the number of hours spent per week by child *i* in household *j*, and Re m_j is the log of remittances amount. X_j is a vector of household characteristics (e.g. size, location, region, absence of the spouse, number of migrants etc) and ε_k captures the effects of unobserved factors common to a given household. These characteristics have been observed in other studies to have a strong effect on schooling outcomes (see (Curran, Chung, Cadge, & Varangrat, 2003; Sherpa, 2011). Based on (3), we also specify our empirical model and employ a two-stage estimation technique, taking the following into account: (i) estimating equation (3) using OLS is likely to yield biased estimates due the endogeneity associated with household remittance flow and (ii) the possible bi-causal relationship inherent in the remittance-child education nexus.

4.2.2 Empirical strategy — Instrumental variable estimation

Following the works of Amuendo-Dorantes and Pozo (2010); Curran et al. (2003) and Sherpa (2011), we employ an instrumental variable strategy (IV) to specify our empirical model, acknowledging the potentially endogenous nature of remittance (Acosta et al., 2007). This problem arises because decisions on migrant remittances and education choices are usually made simultaneously and many variables that explain migrant remittances also determine education preferences (Schapiro, 2009). This may lead to inconsistent estimates because remittance inflow can be the cause and the consequence of child education. Remittances to the household can lead to an improvement in child education. On the other hand, child education can influence an increase in the transfer of remittances to the household. To resolve the endogeneity and possible bi-directional relationship between household remittance inflow and child education, we employed the "channel of receiving remittance" as an instrument because it satisfied the two general restrictions proposed by Wooldridge (2009) and Cameron and Trivedi (2010). First, the channel of receiving remittance is directly related to remittance inflow (Mazzucato, 2009; Sam, Boateng, & Oppong-boakye, 2013) while it is uncorrelated with the number of hours children spend in school per week. A good instrument can eliminate the biases that arise from this endogeneity. We specify our structural and reduced form equations as follows:

Structural equation (2nd Stage)

 $hrs_sch_{i} = \alpha_{0} + \alpha_{1} \ln rem_{i} + \alpha_{2} rural_{i} + \alpha_{3} \ln inc_wt_rem_{i} + \alpha_{4} migrants_{i} + \alpha_{5} abspouse_{i}$ $+ \alpha_{6} hhsize_{i} + \alpha_{7} agehd_{i} + \alpha_{8} femalehd_{i} + \alpha_{9} edu_{i} + \alpha_{10} chdlabhrs_{i} + \alpha_{11} agechd_{i}$ (4) + $\alpha_{12} femalechd_{i} + \varepsilon_{i}$

Reduced form equation (1st stage)

$$\ln rem_{i} = \gamma_{0} + \gamma_{1} channel_{i} + \gamma_{2} rural_{i} + \gamma_{3} \ln inc wt rem_{i} + \gamma_{4} migrants_{i} + \gamma_{5} abspouse_{i} + \gamma_{6} hhsize_{i} + \gamma_{7} agehd_{i} + \gamma_{8} femalehd_{i} + \gamma_{9} edu_{i} + \gamma_{10} chdlabhrs_{i} + \gamma_{11} agechd_{i} + \gamma_{12} femalechd_{i} + \upsilon_{i}$$
(5)

where *hrs_sch* is the number of hours children spend in school per week; ln *rem* is the log of total household remittance inflows; *channel* represents the channel of receiving remittance; *rural* is a dummy variable for location, where 0 is for urban and 1 is for rural; linc_*wt*_rem is the log of household income without remittance; *migrants* is number of out-migrants from the household; *abspouse* represents a household with absent spouse; *hhsize* is the household size; *agehd* is the age of the household head; *femalehd* is a gender dummy for the household head, where 0 is male and 1 is female; *edu* is a dummy variable indicating whether the household head is educated or not; *chdlabhrs* is hours of child labour per week, *agechd* is age of the child; and *femalechd* refers to the gender of the child which is captured as 0 for male child and 1 for female child. In addition to this model, sub-samples relating to the gender of the child and the location of the household are estimated.

4.2.3 Post-estimation tests

Endogeneity was tested using the Wu–Hausman test (*p*-value = 0.0115) which leads to a rejection of the null hypothesis that remittance inflow is exogenous. The weak identification test was also carried out to find out if the instrument has a weak correlation with the endogenous regressor. Since the Kleibergen-Paap rk Wald F statistic is 35.68 and exceeds the Stock-Yogo weak ID critical values at 10% maximal IV size, we reject the null hypothesis of weak instrument and conclude that the model does not have problems with weak identification. The link test for model specification also has the expectedly significant _hat and an insignificant _hatsq which means that the model is correctly specified (see Table 2).

5. Results and discussion of results

5.1 Effect of remittances on child education

Table 2 shows the results of the effect of remittance inflows on child education as estimated by OLS and IV stratgies. Column 2 reports the OLS results, which does not control for any potential endogeneity. Based on the OLS estimate, a 40% increase in household remittance inflow results in about 8 minutes reduction in school hours per week (32 minutes per month)². Even though this result is highly significant, it is counter-intuitive and bias because of the presence of endogeneity. The IV estimator, on the contrary, yields intuitive results because it exogenesises remittance inflow. The rest of the analysis and discussion are hinged on the IV estimates.

 $^{^{2}}$ After dividing the coefficient of remittance by 100 (because it is log-transformed), we scaled both up by 40 and converted the outcome which is still in hours into minutes by multiplying by 60. For those in hours, we maintain them as they are

We also find that a 40% increase in remittances received by a household will also increase the time children spend in school by about 22 minutes (1.5 hours per month). This finding corroborates that of Amuedo-Dorantes et al., (2010) who found in some Haitian communities that remittances raise school attendance for all children regardless of whether they have household members abroad or not. Although education at the basic level is free in Ghana, families are often required to purchase uniforms, school materials and pay Parent Teacher Association (PTA) dues. Children without uniforms or PTA dues may have difficulties joining their colleagues in school. For some children, their homes or villages are located many miles away from their schools and so they need money to travel to and from school. Thus, remittance inflow to households would lead to an increase in the number of hours the child spends in school. In terms of the location of the household, a 40% increase in remittance inflow to urban-located households result in about 55 minutes (3 hours and 40 minutes) increase in the time children spend in school. This was not the case for their rural counterparts. The study by Edward and Ureta (2003) also revealed that remittance inflow to urban households increased the number of children attending school beyond Grade 6 by 50%. The point of departure between the two studies is that we employ an IV estimator to resolve the endogeneity inherent in remittance inflow into households.

	Full Model			ban	Rural		
School hours per week	OLS	IV	OLS	IV	OLS	IV	
In (total remittance inflows)	-0.330**	0.921*	0.233	2.309***	-0.687***	-0.428	
In (total relinitance innows)	(0.138)	(0.530)	(0.197)	(0.695)	(0.193)	(0.657)	
Rural (0=urban; 1=rural)	-3.138***	-2.422***	(0.177)	(0.0)3)	(0.175)	(0.057)	
Kurai (0–urbaii, 1–rurai)	(0.408)	(0.513)					
ln(Household income without	0.511***	0.456***	0.217	0.092	0.781***	0.765***	
remittance)	(0.149)	(0.152)	(0.219)	(0.237)	(0.200)	(0.201)	
Number of migrants	-0.079	-0.344	0.332	0.241	-0.325	-0.397	
rumber of migrants	(0.341)	(0.376)	(0.472)	(0.529)	(0.447)	(0.498)	
Absence of spouse	-1.696*	-1.809**	-1.656	0.394	-1.212	-1.389	
reserve or spouse	(0.875)	(0.889)	(1.224)	(1.857)	(1.196)	(1.247)	
Household size	-0.189***	-0.240***	0.038	0.017	-0.240***	-0.255***	
	(0.068)	(0.073)	(0.133)	(0.137)	(0.077)	(0.084)	
Age of household head	0.017	0.008	-0.029	-0.052**	0.036**	0.034**	
	(0.013)	(0.014)	(0.022)	(0.024)	(0.016)	(0.016)	
Female household head	1.790**	0.915	1.216	-2.431	1.497	1.452	
	(0.894)	(0.991)	(1.291)	(1.932)	(1.182)	(1.180)	
Education of head (1=yes; 0=no)	1.536***	1.004**	-0.232	-1.099	2.247***	2.548***	
	(0.401)	(0.470)	(0.697)	(0.777)	(0.491)	(0.554)	
Hours of child labour per week	-0,050***	-0.051***	-0.035	-0.013	-0.053***	-0.054***	
L	(0.010)	(0.010)	(0.027)	(0.028)	(0.011)	(0.011)	
Age of child	0.200***	0.198***	0.021	0.030	0.324***	0.323***	
C	(0.058)	(0.059)	(0.092)	(0.097)	(0.074)	(0.074)	
Female child	-0.162	-0.198	-0.178	-0.353	-0.101	-0.090	
	(0.361)	(0.367)	(0.603)	(0.630)	(0.447)	(0.446)	
Constant	26.511***	21.480***	26.582***	21.764***	17.932***	17.114***	

 Table 2: Results of the Effect of Remittances on Child Education

10

	(2.016)	(2.881)	(3.067)	(3.440)	(2.480)	(3.213)
Observations (N)	2517	2517	939	939	1578	1578
R-squared	0.0828	0.0517	0.0119	0.0119	0.0985	0.0973
P-value- Link test		0.000				
_haqsq		0.122				
Endogeneity						
Wu–Hausman F (1,2503) =6.397	7	(pr=0.0115)				
Weak identification						
F-Statistic (Staiger & Stock)		35.678				

Robust standard errors in parentheses

Source: Computed from GLSS 6, 2012/2013 *p<0.10 **p<0.05 ***p<0.01.

OLS - Ordinary least squares IV - instrumental variables estimation

Instruments: Channel of receiving remittance [Western Union, MoneyGram, Vigo (Merchant Bank), Fast Money Transfer (GCB), bank accounts, post office, friends/relations, brought home by migrant and other means]

We also find that a 40% increase in remittances received by a household will also increase the time children spend in school by about 22 minutes (1.5 hours per month). This finding corroborates that of Amuedo-Dorantes et al., (2010) who found in some Haitian communities that remittances raise school attendance for all children regardless of whether they have household members abroad or not. Although education at the basic level is free in Ghana, families are often required to purchase uniforms, school materials and pay Parent Teacher Association (PTA) dues. Children without uniforms or PTA dues may have difficulties joining their colleagues in school. For some children, their homes or villages are located many miles away from their schools and so they need money to travel to and from school. Thus, remittance inflow to households would lead to an increase in the number of hours the child spends in school. In terms of the location of the household, a 40% increase in remittance inflow to urban-located households result in about 55 minutes (3 hours and 40 minutes) increase in the time children spend in school. This was not the case for their rural counterparts. The study by Edward and Ureta (2003) also revealed that remittance inflow to urban households increased the number of children attending school beyond Grade 6 by 50%. The point of departure between the two studies is that we employ an IV estimator to resolve the endogeneity inherent in remittance inflow into households.

Again, we find that children who reside in rural-located households (see full model from Table 2), spend an average of 2.4 hours lesser in school compared to their urban counterparts In Ghana, schools in rural areas commonly face challenges such as poverty, geographic isolation, insufficient resources, and poor teacher quality in comparison with their urban counterparts. In addition, most of the children in the villages travel for long hours on daily basis just to access formal education in nearby villages or towns. Besides, some of the children have to help their parents at home before going to school every morning. All these account for the lesser number of hours that children in the rural areas spend in school.

We also establish that an increase in household income without remittance by 40% moderately increases children's time spent in school by 11 minutes. This confirms the

expectation that household income without remittance has a part to play in determining the number of hours children spend in school. This result is consistent with that of Kalaj (2010) who found a positive effect of household income on child education in Albania. The income effect is significant in the rural area but not in the urban area and in the cities. The urban outcome is partly explained by the homogenous nature of school hours spent by children in the cities and big towns.

Children from homes that have absent spouses spend an average of 1.8 hours lesser time in school than their mates who come from homes with spouses being present. Saucedo (2006) also found similar outcomes in Mexico, where children living with both parents were seen to have had greater opportunities to focus on schooling. Thus, children living with both parents have a greater chance of spending more hours in school than those whose parent(s) are absent.

Again, our findings indicate that household size has a negative influence on child education and is seen as being more of a rural phenomenon than an urban situation. Adding another member to a rural household means more people now compete for the limited financial resources and children suffer a reduction in their school hours. It could also be explained in the form of increase in the number of dependents on the child's time need, warranting sacrifices in school hours. Similar revelations can be found in Shen's (2017) Indian study that showed that limiting family size has beneficial consequence for child education in China. Furthermore, an increase in the age of urban-located household heads results in a decrease in their children's number of hours spent in school but a similar increase in the age of their rural counterpart rather increases the number of hours their children spend in school.

On the average, children from the homes of educated household heads spend an average of one hour in school more than children whose household heads are not educated. The differential effect from the educational status of the household head is mainly manifest in the rural areas and not the urban areas.

According to UNICEF (2008), child labour is one of the obstacles in the way of the Millennium Development Goal of universal primary education. The number of hours a child works outside school can affect child schooling. Our study establishes that increase in child labour hours leads to a reduction in the number of hours these children spend in school and the problem is more apparent in the rural areas of the country. This supports the findings of Gunnarsson, Orazem and Sanchez (2006) who indicated that child work has the potential to harm a child's school outcomes by limiting the time spent on studies, or leaving the child too tired to make efficient use of the time in school. Similarly, children's age positively influences the number of hours they spend in school. Our finding can be aligned with that of Olaniyan's (2011) Nigerian study which provides evidence that the older a child becomes, the higher the probability of attending school.

5.2 Gender perspective of remittances and child education

The policies of many governments have generally aimed at closing the gender disparities in education. In spite of this effort, the gender differences in educational participation have remained a challenging issue in many countries including Ghana. The purpose of this section is to present separate results that capture gender heterogeneous in the effect of remittance inflows on child education in Ghana.

	Gender			
		Male		nale
School hours per week	OLS	IV	OLS	IV
ln (total remittance inflows)	-0.100	2.645***	-0.560***	-0.283
	(0.195)	(0.839)	(0.198)	(0.670)
Rural (0=urban; 1=rural)	-3.067***	-1.720**	-3.274***	-3.120***
	(0.570)	(0.759)	(0.587)	(0.721)
ln(Household income without remittance)	0.393*	0.235	0.614***	0.619***
``````````````````````````````````````	(0.213)	(0.235)	(0.211)	(0.212)
Number of migrants	-0.524	-1.168***	0.462	0.407
ç	(0.510)	(0.590)	(0.402)	(0.529)
Absence of spouse	-01.511	-1.8211	-1.840	-1.854
•	(1.352)	(1.437)	(1.135)	(1.130)
Household size	-0.238**	-0.368***	-0.143	-0.151*
	(0.104)	(0.120)	(0.88)	(0.090)
Age of household head	0.008	-0.006	0.024	0.021
C	(0.019)	(0.021)	(0.018)	(0.019)
Female household head	0.974	-1.126	2.455**	2.260
	(1.408)	(1.640)	(1.130)	(1.218)
Education of head (1=yes; 0=no)	1.694***	0.559	1.393**	1.278*
	(0.563)	(0.719)	(0.577)	(0.655)
Hours of child labour per week	-0.043***	-0.047***	-0.058***	-0.059***
L	(0.014)	(0.014)	(0.015)	(0.015)
Age of child	0.179**	0.172*	0.223***	0.228***
C	(0.084)	(0.092)	(0.080)	(0.080)
Constant	27.823***	17.712***	25.144***	23.904***
	(2.886)	(4.283)	(2.734)	(3.922)
Sample Size	1268	1268	1252	1252
R-squared	0.235	0.223	0.246	0.235
P-value- Link test	0.000			
_haqsq	0.122			
Endogeneity				
Wu–Hausman F (1,2503) =6.397	(pr=0.0115)			
Weak identification	·1 /			
F-Statistic (Staiger & Stock)	35.678			
Robust standard errors in parentheses				

#### Table 3: Results of the effect of child gender on child education

Source: Computed from GLSS 6, 2012/2013 *p<0.10 **p<0.05 ***p<0.01.

OLS - Ordinary least squares IV - instrumental variables estimation

**Instruments:** Channel of receiving remittance [Western Union, MoneyGram, Vigo (Merchant Bank), Fast Money Transfer (GCB), bank accounts, post office, friends/relations, brought home by migrant and other means]

Results for the gender heterogeneities show that while increases in remittance inflows have a positive influence on boy-child education, it does not explain girl-child education. This result suggests that the gains in school hours from remittances are much greater for boys and do not make any or more of a difference in improving that of the girls. Our finding supports that of Elbadawy and Roushdy (2009) who found that households remittance inflows improved school attendance for boys but was less of an effect for girls. Again, while all children in rural-located households spend lesser time in school compared to their urban mates, the rural disadvantage affects the girl child more than the boy-child.

Again, an increase in the household size reduces school hours for children but the effect on male children is greater than that of female children. Also, children from homes where the heads are educated spend relatively more time in school but this significantly influences the number of hours the girl-child spends in school and not for the boy-child.

Finally, we find that the negative effect of child labour on children's time spent in school affects male children than their female counterparts. Also, the positive influence of children's age on their duration in school is seen as being more for boys than for girls. This can also be explained from the angle of girls becoming more conscious of their education as they grow than boys do.

#### 6. Conclusion and policy recommendations

Household remittance inflows are becoming an indispensable part of the household budget in the developing world (including Ghana) and a number of studies have been done to determine the effect of such inflows on key socioeconomic indicators including child education. Apart from many of these studies being largely undertaken in Asia and Latin America, with relatively few from Africa, the endogenous nature of remittance has been downplayed. Also, previous studies have largely ignored children in nursery and kindergarten levels when considering child education. We employ an instrumental variable approach to investigate the effect of household remittance inflows on the number of hours children spend in school and include children in nursery and kindergarten in our consideration of child education.

After employing the channel of receiving remittance as an instrument to address the endogeneity inherent in remittance inflow and estimation sub-sampled models to cater for gender and locational heterogeneities, our findings shows show the following:

- Generally, increasing household remittance inflow by 40% will result in about 22 minutes increase in the time children spend in school per week, translating into about 1.5 hours per month. In the urban areas, the resultant increase is about 55 minutes per week (3 hours and 40 minutes per month) but remittance did not significantly affect school hours of the rural-located children.
- Although increases in remittance inflows positively influence boy-child education, it does not explain girl-child education. This result suggests that the gains in school hours from

remittances are much greater for boys and do not make any or more of a difference in improving that of the girls.

- While all children in rural-located households spend lesser time in school (2.4 hours less) compared to their urban mates, the rural disadvantage affects the girl child more than the boy-child.
- The negative effect of child labour on children's time spent in school affects male children than their female counterparts.
- Children from homes of educated household heads spend an average of one hour in school more than colleagues from homes of uneducated heads. The differential effect from the educational status of the household head is mainly manifest in the rural areas and not the urban areas.

Our central finding is that household remittance inflows play instrumental roles in augmenting households' and government efforts at educating children and for this reason, regulators of the financial system should develop strategic sectoral policies that address all challenges facing remittance transfers. This will remove rigidities and ensure continuity and regularity of remittance inflows to the household.

#### References

- Acosta, P. (2006). Labor supply, school attendance, and remittances from international migration: the case of El Salvador. Retrieved from https://papers.ssrn.com/sol3/papers. cfm?abstract_id=923241
- Acosta, P. (2007). Entrepreneurship, labor markets, and international remittances: evidence from El Salvador. *International Migration, Economic Development and Policy, Özden and Schiff Eds.*
- Acosta, P., Fajnzylber, P., & Lopez, J. H. (2007). The impact of remittances on poverty and human capital: evidence from Latin American household surveys (Vol. 4247). World Bank Publications.
- Adams Jr, R. H., & Cuecuecha, A. (2010). Remittances, household expenditure and investment in Guatemala. *World Development*, *38*(11), 1626–1641.
- Adams Jr, R. H., & Cuecuecha, A. (2013). The impact of remittances on investment and poverty in Ghana. *World Development*, *50*, 24–40.
- Amuedo-Dorantes, C., Georges, A., & Pozo, S. (2010). Migration, remittances, and children's schooling in Haiti. *The ANNALS of the American Academy of Political and Social Science*, 630(1), 224–244.
- Amuedo-Dorantes, C., & Pozo, S. (2006). Remittances as insurance: evidence from Mexican immigrants. *Journal of Population Economics*, 19(2), 227–254.
- Amuedo-Dorantes, C., & Pozo, S. (2010a). Accounting for remittance and migration effects on children's schooling. *World Development*, *38*(12), 1747–1759.

- Arif, G. M. (2004). Effects of overseas migration on household consumption, education, health and labour supply in Pakistan. *International Labour Migration from South Asia, Institute* of Developing Economies and Japan External Trade Organization, Chiba, Japan. Retrieved from http://d-arch.ide.go.jp/infolib2/contents?linkurl=http://d-arch.ide.go.jp/ide dp/ASE/ASE007000_008.pdf&dbid=G0000008DAPUB
- Arif, R., & Chaudhry, A. (2015). The effects of external migration on enrolments, accumulated schooling and dropouts in Punjab. *Applied Economics*, 47(16), 1607–1632.
- Azam, J.-P., & Gubert, F. (2005). Migrant remittances and economic development in Africa: A review of evidence. *AERC Plenary Session, Nairobi, Kenya*.
- Binci, M., & Giannelli, G. C. (2012). Internal vs. international migration: Impacts of remittances on child well-being in Vietnam. Retrieved from https://papers.ssrn.com/sol3/papers.cfm? abstract_id=2051366
- Bouoiyour, J., & Miftah, A. (2015). Why do migrants remit? Testing hypotheses for the case of Morocco. *IZA Journal of Migration*, *4*(1), 2.
- Bouoiyour, J., & Miftah, A. (2016). The Impact of Remittances on Children's Human Capital Accumulation: Evidence from Morocco. *Journal of International Development*, 28(2), 266–280.
- Cameron, C. C., & Trivedi, P. K. (2010). Nonlinear regression methods. *Microeconomics Using Stata*, 319–362.
- Chaaban, J., & Mansour, W. (2012). The impact of remittances on education in Jordan, Syria and Lebanon. In *Economic Research Forum: Workign Paper* (Vol. 684). Retrieved from https://erf.org.eg/wp-content/uploads/2014/08/684.pdf
- Córdova, J. E. L. (2006). Globalization, migration and development: the role of Mexican migrant remittances (Working Paper ITD= Documento de Trabajo ITD; n. 20) (Vol. 20).
  BID-INTAL. Retrieved from https://books.google.com/books?hl=en&lr=&id=kh5I2fUw NwkC&oi=fnd&pg=PA5&dq=Lopez-Cordova+(2004)+infant+mortality&ots=kKCUKw k3a1&sig=xiEbGipFdDMmyFHzTQWzPWMRTGM
- Curran, S. R., Chung, C. Y., Cadge, W., & Varangrat, A. (2003). Educational opportunities for boys and girls in Thailand. In *Inequality Across Societies: Familes, Schools and Persisting Stratification* (pp. 59–102). Emerald Group Publishing Limited. Retrieved from http://www.emeraldinsight.com/doi/pdf/10.1016/S1479-3539(03)14004-9
- De La Brière, B., de Janvry, A., Lambert, S., & Sadoulet, E. (1997). Why do migrants remit? An analysis for the Dominican Sierra.
- Docquier, F., & Rapoport, H. (2005). The economics of migrants' remittances. Handbook on the Economics of Altruism, Reciprocity and Giving, Forthcoming, North-Holland: Amsterdam.
- Edwards, A. C., & Ureta, M. (2003). International migration, remittances, and schooling: evidence from El Salvador. *Journal of Development Economics*, 72(2), 429–461.
- Elbadawy, A., & Roushdy, R. (2009). Impact of international migration and remittances on child schooling and child work: The case of Egypt. *Paper for the World Bank's MENA*

International Migration Program Funded by the European Commission, World Bank, Washington, DC.

- Giorguli Saucedo, S. E., Lezama, J. L., & Morelos, J. B. (2006). School dropout rates, adolescent labor and family structures in Mexico. *Population, City and Environment in Contemporary Mexico. El Colegio de México, México, DF*, 223–257.
- Göbel, K. (2013). Remittances, expenditure patterns, and gender: parametric and semiparametric evidence from Ecuador. *IZA Journal of Migration*, 2(1), 1.
- Görlich, D., Omar Mahmoud, T., & Trebesch, C. (2007). *Explaining labour market inactivity in migrant-sending families: Housework, hammock, or higher education?* Kiel working paper.
- Greenberg, J. P. (2011). The impact of maternal education on children's enrollment in early childhood education and care. *Children and Youth Services Review*, 33(7), 1049–1057.
- Gubert, F. (2007). Migration and Development: Mixed evidence from western Mali. *Development*, 50(4), 94–100.
- Gunnarsson, V., Orazem, P. F., & Sánchez, M. A. (2006). Child labor and school achievement in Latin America. *The World Bank Economic Review*, 20(1), 31–54.
- Gyimah-Brempong, K., & Asiedu, E. (2015). Remittances and investment in education: Evidence from Ghana. *The Journal of International Trade & Economic Development*, 24(2), 173–200.
- Hanson, G. H., & Woodruff, C. (2003). Emigration and educational attainment in Mexico. Mimeo., University of California at San Diego. Retrieved from http://www.childmigration.net/files/Hanson_2003.pdf
- Hines, A. (2014). Migration, Remittances and Human Capital Investment in Kenya. Colgate University, New York. Retrieved from http://blogs.colgate.edu/economics/files/2014/09/ Hines-2014-Migration-Remittances-and-Human-Capital-Investment-in-Kenya.pdf
- Jeffrey, M. W. (2009). Introductory Econometrics: A modern approach. *Canada: South-Western Cengage Learning*.
- Johnson, A. D., Padilla, C. M., & Votruba-Drzal, E. (2017). Predictors of public early care and education use among children of low-income immigrants. *Children and Youth Services Review*, 73, 24–36.
- Kabki, M., Mazzucato, V., & Appiah, E. (2004). 'Wo benanε a εyε bebree': the economic impact of remittances of Netherlands-based Ghanaian migrants on rural Ashanti. *Population*, *Space and Place*, 10(2), 85–97.
- Kalaj, E. H. (2010). Remittances and human capital investment: Evidence from Albania. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2285641
- Köllner, S. (2013). Remittances and educational attainment: Evidence from Tajikistan. Wirtschaftswissenschaftliche Beiträge des Lehrstuhls für Volkswirtschaftslehre, insbes. Wirtschaftsordnung und Sozialpolitik, Universität Würzburg. Retrieved from https:// www.econstor.eu/handle/10419/88919

- Lu, Y., & Treiman, D. J. (2007). The effect of labor migration and remittances on children's education among blacks in South Africa. *California Center for Population Research*. Retrieved from http://escholarship.org/uc/item/4s38n8qh.pdf
- Lucas, R. E., & Stark, O. (1985). Motivations to remit: Evidence from Botswana. *Journal of Political Economy*, 93(5), 901–918.
- Mansour, W., Chaaban, J., & Litchfield, J. (2011). The impact of migrant remittances on school attendance and education attainment: Evidence from Jordan. *International Migration Review*, 45(4), 812–851.
- Mara, I., Narazani, E., Saban, N., Stojilovska, A., Yusufi, I., & Zuber, S. (2012). Analysis of literature on the effects of remittances on education and health of family members left behind. *Regional Research Promotion Programme/Western Balkans*. Retrieved from http://analyticamk.org/~analytic/images/stories/files/Analysis_of_literature_on_the_effec ts_of_remittances_on_education_and_health_of_family_members_left_behind.pdf
- Matano, A., & Ramos, R. (2013). Remittances and educational outcomes: evidence for Moldova. SEARCH working paper WP3/10. April 2013. http://www. ub. edu/searchproject/wpcontent/uploads/2013/05/SEARCH-WP-3.10. pdf.
- Mazzucato, V. (2009). Informal insurance arrangements in Ghanaian migrants' transnational networks: The role of reverse remittances and geographic proximity. *World Development*, 37(6), 1105–1115.
- Mazzucato, V. (2011). Reverse remittances in the migration–development nexus: two-way flows between Ghana and the Netherlands. *Population, Space and Place*, *17*(5), 454–468.
- Mazzucato, V., Van Den Boom, B., & Nsowah-Nuamah, N. N. (2008). Remittances in Ghana: Origin, destination and issues of measurement. *International Migration*, 46(1), 103–122.
- McKenzie, D., & Rapoport, H. (2011). Can migration reduce educational attainment? Evidence from Mexico. *Journal of Population Economics*, 24(4), 1331–1358.
- Mensah-Bonsu, A. (2003). Migration and environmental pressure in northern Ghana.
- Milligan, M. A. (2009). *The welfare effects of international remittance income* (PhD Thesis). The University of New Mexico.
- Mim, S. B., & Mabrouk, F. (2011). *Remittances and economic growth: what channels of transmission?*(*In French*). Groupe de Recherche en Economie Théorique et Appliquée.
- Nguyen, C. V., & Nguyen, H. Q. (2015). Do internal and international remittances matter to health, education and labor of children and adolescents? The case of Vietnam. *Children and Youth Services Review*, 58, 28–34.
- Olaniyan, O. (2011). *The determinants of child schooling in Nigeria*. African Economic Research Consortium.
- Pickbourn, L. (2016). Remittances and Household Expenditures on Education in Ghana's Northern Region: Why Gender Matters. *Feminist Economics*, 22(3), 74–100.
- Poirine, B. (1997). A theory of remittances as an implicit family loan arrangement. *World Development*, 25(4), 589–611.

- Roby, J. L., Erickson, L., & Nagaishi, C. (2016). Education for children in sub-Saharan Africa: Predictors impacting school attendance. *Children and Youth Services Review*, 64, 110– 116.
- Sam, G. A., Boateng, F. O., & Oppong-boakye, P. K. (2013). Remittances from abroad: The ghanaian household perspective. *International Journal of Business and Social Science*, 4(1).
- Schapiro, K. A. (2009). Migration and educational outcomes of children. *Migration*, 57.
- Shen, Y. (2017). The Effect of Family Size on Children's Education: Evidence from the Fertility Control Policy in China. *Frontiers of Economics in China*, *12*(1), 37.
- Sherpa, M. (2011). *Essays on determinants of human capital accumulation*. Retrieved from https://ir.library.oregonstate.edu/xmlui/handle/1957/21940
- Twum-Baah, K. A., Nabila, J. S., & Aryee, A. F. (1995). Migration Research in Ghana, Volume 1, Internal Migration. *Accra: Ghana Statistical Service*.
- UNICEF, (2008). A world fit for children. New York: United Nations Children's Fund.
- Wong, M. (2006). The gendered politics of remittances in Ghanaian transnational families. *Economic Geography*, 82(4), 355–381.
- Xu, Xie, 2015, remittances Google Scholar. (n.d.). Retrieved 3 April 2018, from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Xu%2C++Xie%2C+2015 %2C+remittances&btnG=
- Yang, D. (2008). International migration, remittances and household investment: Evidence from Philippine migrants' exchange rate shocks. *The Economic Journal*, *118*(528), 591–630.
- Zhu, H. (2016). Remittance frequency, transaction fees and household impacts. In 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts. Agricultural and Applied Economics Association.
- World Bank, (2017). World Development Indicators. Washington DC: The World Bank Group.

In(total remittance inflows)	Coefficient
Channel of receiving remittance	
MoneyGram	0.414
5	(0.264)
Vigo merchant bank	-1.50***
C	(0.115)
Fast money transfer (GCB)	-0.985
	(0.184)
Bank accounts	-0.411**
	(0.174)
Post office	-0.299
	(0.183)
Friends/relations	-0.922***
	(0.114)
Brought home by migrant	-1.187***
	(0.120)
Other	-0.709***
	(0.162)
Rural (Urban=0, Rural=1)	-0.350***
	(0.065)
Female household head (Male=0; female=1)	0.638***
	(0.209)
Age of household head	0.006**
	(0.002)
Household size	0.016
	(0.012)
Ln(household income without remittances)	0.011
	(0.028)
Number of migrants	0.320***
Al	(0.058)
Absence of spouse	0.108
Hours of child labour per week	(0.221) -0.001
Hours of cliffu labour per week	(0.001)
Age of child	0.005
Age of child	(0.010)
Female child	-0.101
i onitito offititi	(0.062)
Education of head (yes=1, No=0)	0.306***
Laucation of field (905-1, 110-0)	(0.065)
Constant	5.089***
	(0.40)
Robust standard errors in parentheses	(0.10)

Appendix: First stage regression used for the IV regression

Source: Computed from GLSS 6, 2012/2013. *p<0.10 **p<0.05 ***p<0.01.